Code:
//SHA256 is accredited to the NSA
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdarg.h>
#include <stdint.h>
#define BUF_SIZE 1024
#define uchar unsigned char // 8-bit byte
#define uint unsigned int // 32-bit word
// DBL_INT_ADD treats two unsigned ints a and b as one 64-bit integer and adds c to it
#define DBL_INT_ADD(a,b,c) if (a > 0xffffffff - (c)) ++b; a += c;
#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
typedef struct {
uchar data[64];
uint datalen;
uint bitlen[2];
uint state[8];
} SHA256_CTX;
uint k[64] = {
0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
};
void sha256_transform(SHA256_CTX *ctx, uchar data[])
{
uint a,b,c,d,e,f,g,h,i,j,t1,t2,m[64];
for (i=0,j=0; i < 16; ++i, j += 4)
m[i] = (data[j] << 24) | (data[j+1] << 16) | (data[j+2] << 8) | (data[j+3]);
for ( ; i < 64; ++i)
m[i] = SIG1(m[i-2]) + m[i-7] + SIG0(m[i-15]) + m[i-16];
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
f = ctx->state[5];
g = ctx->state[6];
h = ctx->state[7];
for (i = 0; i < 64; ++i) {
t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
t2 = EP0(a) + MAJ(a,b,c);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
ctx->state[5] += f;
ctx->state[6] += g;
ctx->state[7] += h;
}
void sha256_init(SHA256_CTX *ctx)
{
ctx->datalen = 0;
ctx->bitlen[0] = 0;
ctx->bitlen[1] = 0;
ctx->state[0] = 0x6a09e667;
ctx->state[1] = 0xbb67ae85;
ctx->state[2] = 0x3c6ef372;
ctx->state[3] = 0xa54ff53a;
ctx->state[4] = 0x510e527f;
ctx->state[5] = 0x9b05688c;
ctx->state[6] = 0x1f83d9ab;
ctx->state[7] = 0x5be0cd19;
}
void sha256_update(SHA256_CTX *ctx, uchar data[], uint len)
{
uint t,i;
for (i=0; i < len; ++i) {
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == 64) {
sha256_transform(ctx,ctx->data);
DBL_INT_ADD(ctx->bitlen[0],ctx->bitlen[1],512);
ctx->datalen = 0;
}
}
}
void sha256_final(SHA256_CTX *ctx, uchar hash[])
{
uint i;
i = ctx->datalen;
// Pad whatever data is left in the buffer.
if (ctx->datalen < 56) {
ctx->data[i++] = 0x80;
while (i < 56)
ctx->data[i++] = 0x00;
}
else {
ctx->data[i++] = 0x80;
while (i < 64)
ctx->data[i++] = 0x00;
sha256_transform(ctx,ctx->data);
memset(ctx->data,0,56);
}
// Append to the padding the total message's length in bits and transform.
DBL_INT_ADD(ctx->bitlen[0],ctx->bitlen[1],ctx->datalen * 8);
ctx->data[63] = ctx->bitlen[0];
ctx->data[62] = ctx->bitlen[0] >> 8;
ctx->data[61] = ctx->bitlen[0] >> 16;
ctx->data[60] = ctx->bitlen[0] >> 24;
ctx->data[59] = ctx->bitlen[1];
ctx->data[58] = ctx->bitlen[1] >> 8;
ctx->data[57] = ctx->bitlen[1] >> 16;
ctx->data[56] = ctx->bitlen[1] >> 24;
sha256_transform(ctx,ctx->data);
// Since this implementation uses little endian byte ordering and SHA uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for (i=0; i < 4; ++i) {
hash[i] = (ctx->state[0] >> (24-i*8)) & 0x000000ff;
hash[i+4] = (ctx->state[1] >> (24-i*8)) & 0x000000ff;
hash[i+8] = (ctx->state[2] >> (24-i*8)) & 0x000000ff;
hash[i+12] = (ctx->state[3] >> (24-i*8)) & 0x000000ff;
hash[i+16] = (ctx->state[4] >> (24-i*8)) & 0x000000ff;
hash[i+20] = (ctx->state[5] >> (24-i*8)) & 0x000000ff;
hash[i+24] = (ctx->state[6] >> (24-i*8)) & 0x000000ff;
hash[i+28] = (ctx->state[7] >> (24-i*8)) & 0x000000ff;
}
}
void print_hash(unsigned char hash[])
{
int idx;
for (idx=0; idx < 32; idx++)
printf("%02x",hash[idx]);
printf("\n");
}
struct log_n {
char uid[BUF_SIZE];
char pwd[BUF_SIZE];
};
struct log_n acc[1] = {
"username","5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8"
};
struct log_n query;
int main() {
char *hashstr;
unsigned char hash[BUF_SIZE];
int idx;
SHA256_CTX ctx;
do {
do{
printf("Username: ");
fgets(query.uid, sizeof query.uid, stdin);
query.uid[strcspn(query.uid, "\n")] = '\0';
if (strlen(query.uid) > 15) {
printf("Username must be less than fifteen characters.\nTry again.\n");
}
} while (strlen(query.uid) > 15);
do{
printf("Password: ");
fgets(query.pwd, sizeof query.pwd, stdin);
query.pwd[strcspn(query.pwd, "\n")] = '\0';
sha256_init(&ctx);
sha256_update(&ctx,query.pwd,strlen(query.pwd));
sha256_final(&ctx,hash);
//conversion from int to string
for (idx=0; idx < 32; idx++)
sprintf(&hashstr[idx], "%x",hash[idx]);
printf("Digest: ");
print_hash(hash);
printf("Expected: %s\n", acc->pwd);
printf("Digest convert: %s\n", hashstr);
if (strlen(query.pwd) < 8) {
printf("Password must be atleast eight characters.\nTry again.\n");
}
} while (strlen(query.pwd) < 8);
} while (strcmp(query.uid, acc->uid) !=0 || strcmp(hashstr, acc->pwd) !=0);
}