Like Tree4Likes

Concept of Quantity

This is a discussion on Concept of Quantity within the General Discussions forums, part of the Community Boards category; Assume a rectangle with a width of 1 and a height of pi. The area of the rectangle is width ...

  1. #16
    Registered User
    Join Date
    Oct 2006
    Posts
    250
    Assume a rectangle with a width of 1 and a height of pi. The area of the rectangle is width x height = 1 x pi = pi.

    Divide the width of the rectangle by two, and multiply the height of the rectangle by two. The area of the rectangle is width x height = 1/2 x 2pi = pi.

    Repeat ad infinitum and one arrives at the case of inifinitesimally small x infinitely large. The result is ... pi.

    Then again, were the original rectangle of width 1 and height e, then infinitesimally small x infinitely large would equal e.

    However useful, infinity and infinitesimality are concepts, not numbers. You cannot just multiply them and expect to get a defined answer in return.
    iMalc: Your compiler doesn't accept misspellings and bad syntax, so why should we?
    justin777: I have no idea what you are talking about sorry, I use a laptop and there is no ascii eject or something

  2. #17
    Password:
    Join Date
    Dec 2009
    Location
    NC
    Posts
    587
    Quote Originally Posted by User Name: View Post
    To prove .(000)1 is not a number, AFAIK, requires a real analysis concept called Cauchy Sequences. Basically, it means that any real number can be expressed as a convergent sequence of differences. There is not sequence that can converge to .(000)1.
    Hm.... I think I may have to change my mind on this. Using nested intervals theorem, you could say .(000)1 = 0, because both 0 and .(000)1 is in the infinitely nested intervals [0, 1], [0, .1], [0, .01], ad infinitum.

  3. #18
    (?<!re)tired Mario F.'s Avatar
    Join Date
    May 2006
    Location
    Portugal
    Posts
    7,453
    Quote Originally Posted by Yarin View Post
    Why do you say "infinity and infinitesimal in the same sentence to mean the same thing"? It seemed to me, that you meant different things. It seems like you said "infinite" in reference to "so many that the amount has no end, and "infinitesimal" in reference "so small their smallness has no end".
    I think you pretty much answered yourself in the last sentence. What's an infinitesimal quantity if nothing else than an infinite quantity? Can you bound it? More on that below, where I revisit 42.

    I don't see the paradox your talking about. If the length is infinite of course the arrow would take an infinite amount of time to reach the target.
    The paradox is achieved the moment you realize that yet still the arrow always reaches the target. Strengthening the idea that infinity boundless quality is only possible due to it's dimensionless attribute. And "dimensionless" doesn't fit with "big" or "small".

    My thinking is, your right, infinity can't be measured. Let me give an illustration of what I'm thinking. Say, in space (by space I mean an imaginary void, not real space), there's a road, who's size is infinite (NOT infitesimal), remember, infinity means "boundless", so the road's size wouldn't be bound, and without bound, things keep going. So while on the road, we take a measuring tape and measure part of the road we're standing on, which we measure to be... 42 inches. Now, if we want to, we can walk a few yards and measure the same length out again. How does that not prove that 42 is smaller than infinity? Now, let's say we can pick up the road. Now matter which way we place it, we won't be able to put it within the 42 inches we have measured out. How does that not prove that infinity is bigger than 42?
    I didn't say it wasn't. I said it is also smaller than 42. It is both things at the same time in fact. Or more probably, neither one of them. It does not respect our puny attempts at giving it a dimensional property. If I tell you that I measured the distance between the arrow and the target as being 42 paces, won't you immediately reach the realization that infinity is after all also smaller than 42 paces?

    Infinity is boundless, dimensionless, nor greater or smaller, unless you get a specific need to bring it down to our level of comprehension, in which case you will use math to try and define a more or less formalized set of rules to try to explain/comprehend/use it. Problem is you are probably always going to find these paradoxes and you are going always to have to resort to mathematical fallguys like indeterminates... and accept the practical consequences of your audacity (NaNs). I don't think you can represent infinity within a dimensional field without that removing its properties. The moment you explain it in terms of size, you know you missed the point.
    Last edited by Mario F.; 02-25-2011 at 02:50 AM.
    The programmer’s wife tells him: “Run to the store and pick up a loaf of bread. If they have eggs, get a dozen.”
    The programmer comes home with 12 loaves of bread.


    Originally Posted by brewbuck:
    Reimplementing a large system in another language to get a 25% performance boost is nonsense. It would be cheaper to just get a computer which is 25% faster.

  4. #19
    Banned ಠ_ಠ's Avatar
    Join Date
    Mar 2009
    Posts
    687
    Quote Originally Posted by Mario F. View Post
    I didn't say it wasn't. I said it is also smaller than 42. It is both things at the same time in fact. Or more probably, neither one of them.
    ah, so infinity is probably 42..., thank you, this information is sure be useful to figuring out what the Ultimate Question is
    ╔╗╔══╦╗
    ║║║╔╗║║
    ║╚╣╚╝║╚╗
    ╚═╩══╩═╝

  5. #20
    Registered User
    Join Date
    Jan 2009
    Posts
    1,485
    Here's a BBC documentary on infinity, with some of it's apparent paradoxes and peculiarities, if you have an hour to kill.

    YouTube - BBC Horizon (2010) - To Infinity and Beyond (complete, uncut)

  6. #21
    (?<!re)tired Mario F.'s Avatar
    Join Date
    May 2006
    Location
    Portugal
    Posts
    7,453
    Fascinating! You stole one hour from my workday. Well done

    Interesting prospect the idea of an infinite number of universes, each of them infinite. I was thinking this same issue yesterday. How could one describe this concept, given that an universe being infinite, because its boundless, would certainly have to preclude the existence of any other universe.

    Then the thought occurred to me as I was rereading about the arrow paradox. And it starts with the premise, "Is infinity boundless? Think again". Let's look at the following bounded interval of real numbers; [0, 42]. It's perfectly bounded. Yet, there's an infinite number of elements inside. The universe of elements inside this closed interval is infinite. It's an infinite bounded universe -- another delicious paradox on what possibility the biggest mass producer of those in cosmology; Infinity.

    ed: well, by definition infinity is bound to produce an infinite number of paradoxes... big deal
    Last edited by Mario F.; 02-25-2011 at 05:34 AM.
    The programmer’s wife tells him: “Run to the store and pick up a loaf of bread. If they have eggs, get a dozen.”
    The programmer comes home with 12 loaves of bread.


    Originally Posted by brewbuck:
    Reimplementing a large system in another language to get a 25% performance boost is nonsense. It would be cheaper to just get a computer which is 25% faster.

  7. #22
    Password:
    Join Date
    Dec 2009
    Location
    NC
    Posts
    587
    Quote Originally Posted by Mario F. View Post
    And it starts with the premise, "Is infinity boundless? Think again". Let's look at the following bounded interval of real numbers; [0, 42]. It's perfectly bounded. Yet, there's an infinite number of elements inside. The universe of elements inside this closed interval is infinite. It's an infinite bounded universe -- another delicious paradox on what possibility the biggest mass producer of those in cosmology; Infinity.
    That's a different kind of infinity. The measure of members in a set is called cardinality. There are infinitely many infinities(cardinal numbers) used for denoting which infinite sets are bigger than others. (That was purposefully overcomplicated, it's actually pretty simple.) Like, for example, that the set of real is bigger than that of naturals.

    Cardinality - Wikipedia, the free encyclopedia

    And, yes, it is boundless, by definition. Wikipedia says that the word itself is from the Latin for "unboundedness."
    Last edited by User Name:; 02-25-2011 at 01:13 PM.

  8. #23
    S Sang-drax's Avatar
    Join Date
    May 2002
    Location
    Göteborg, Sweden
    Posts
    2,072
    Quote Originally Posted by Yarin View Post
    So I know infinitesimility is suppose to = 0, but I was thinking, what does infinitesimility * infinity equal? I mean, I would think it would have to equal 1, which argues infinitesimility = 0.
    What do you guys think?
    You don't argue in math. You need to have a clear definition of the concepts you are using.

    As for your example, if f(x) -> oo and g(x) -> oo , we still cannot say much about f(x)/g(x). The limit can be 0, it can be oo, or something in between.

    EDIT:
    And no, 0.(000)1 is not a number. What would it mean? 0.(9) means lim(N->oo) sum(1...N) 9/10^N.
    Last edited by Sang-drax : Tomorrow at 02:21 AM. Reason: Time travelling

  9. #24
    Password:
    Join Date
    Dec 2009
    Location
    NC
    Posts
    587
    Quote Originally Posted by Sang-drax View Post
    And no, 0.(000)1 is not a number. What would it mean?
    Why wouldn't it be number?

    Quote Originally Posted by Sang-drax View Post
    0.(9) means lim(N->oo) sum(1...N) 9/10^N.
    That's a good way to evaluate .999... but, .999... = lim(N->oo) sum(1...N) 9/10^N doesn't imply .999... := lim(N->oo) sum(1...N) 9/10^N.

  10. #25
    S Sang-drax's Avatar
    Join Date
    May 2002
    Location
    Göteborg, Sweden
    Posts
    2,072
    Quote Originally Posted by User Name: View Post
    Why wouldn't it be number?
    EDIT: I see that you agree with me in a post above.

    Quote Originally Posted by User Name: View Post
    That's a good way to evaluate .999... but, .999... = lim(N->oo) sum(1...N) 9/10^N doesn't imply .999... := lim(N->oo) sum(1...N) 9/10^N.
    Then what is the definition of 0.(9)?
    Last edited by Sang-drax; 02-28-2011 at 04:31 PM.
    Last edited by Sang-drax : Tomorrow at 02:21 AM. Reason: Time travelling

  11. #26
    Password:
    Join Date
    Dec 2009
    Location
    NC
    Posts
    587
    Quote Originally Posted by Sang-drax View Post
    Then what is the definition of 0.(9)?
    .(9) is the definition of .(9), just like 2 is the definition of 2 and pi is the definition of pi.

  12. #27
    Captain Crash brewbuck's Avatar
    Join Date
    Mar 2007
    Location
    Portland, OR
    Posts
    7,239
    Suppose that 0.999... != 1.

    Okay, what's the average of the two? For that matter give me ANY number that exists between them.
    Code:
    //try
    //{
    	if (a) do { f( b); } while(1);
    	else   do { f(!b); } while(1);
    //}

  13. #28
    Crazy Fool Perspective's Avatar
    Join Date
    Jan 2003
    Location
    Canada
    Posts
    2,640
    If there's one thing I've learned about math, it's that Sang-drax is always right.

    Quote Originally Posted by brewbuck View Post
    Suppose that 0.999... != 1.

    Okay, what's the average of the two? For that matter give me ANY number that exists between them.
    What's the average of infinity and 12? You can't plug concepts like that into normal math equations. The idea of 0.999... is different from a specific number.

    And certainly 0.999... is not equal to 1. Just because you can't find a number in between them doesn't make them the same. The inequality 0.999... < 1 still holds for any number of nines.

  14. #29
    C++ Witch laserlight's Avatar
    Join Date
    Oct 2003
    Location
    Singapore
    Posts
    21,704
    Quote Originally Posted by Perspective
    And certainly 0.999... is not equal to 1. (...) The inequality 0.999... < 1 still holds for any number of nines.
    Prove it. (The qualifier "any number of nines" sounds strange to me, given the context: we're talking about the 9s repeating without end.)
    Last edited by laserlight; 03-01-2011 at 08:29 AM.
    C + C++ Compiler: MinGW port of GCC
    Version Control System: Bazaar

    Look up a C++ Reference and learn How To Ask Questions The Smart Way

  15. #30
    (?<!re)tired Mario F.'s Avatar
    Join Date
    May 2006
    Location
    Portugal
    Posts
    7,453
    Isn't it self-evident that an irrational number composed entirely 9s is smaller than its closest higher integer? Maybe you math folks have some way to formalize this proof. I do wonder though if it is required when we have already been expressing such things in other ways. Like with an interval, for instance ( [0, 1[ ).

    Incidentally, Sang-drax expression above has a quality that is, I think, not being properly acknowledged: N->oo meaning isn't really that N grows towards infinity. Although that certainly can be safely implied, that description can hide one important piece of information for this purpose. What N->oo truly means is that N grows unbounded. And given the accountability properties of Real Numbers I think a simple Cantor's diagonal is enough to prove that 0.(9) is not 1.
    The programmer’s wife tells him: “Run to the store and pick up a loaf of bread. If they have eggs, get a dozen.”
    The programmer comes home with 12 loaves of bread.


    Originally Posted by brewbuck:
    Reimplementing a large system in another language to get a 25% performance boost is nonsense. It would be cheaper to just get a computer which is 25% faster.

Popular pages Recent additions subscribe to a feed

Similar Threads

  1. left shifting signed quantity
    By BEN10 in forum C Programming
    Replies: 6
    Last Post: 04-01-2009, 07:39 AM
  2. "Magos is an unknown quantity at this point"
    By Magos in forum A Brief History of Cprogramming.com
    Replies: 36
    Last Post: 04-30-2004, 11:27 AM
  3. Trivial Trigonometry Question, Need Help Understanding Concept
    By SourceCode in forum A Brief History of Cprogramming.com
    Replies: 3
    Last Post: 12-14-2003, 04:50 PM
  4. help !!concept of class templates
    By sanju in forum C++ Programming
    Replies: 1
    Last Post: 03-20-2003, 08:12 AM
  5. linkedlist concept please!
    By SAMSAM in forum C Programming
    Replies: 3
    Last Post: 03-15-2003, 12:50 PM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21