1=0.

This is a discussion on 1=0. within the A Brief History of Cprogramming.com forums, part of the Community Boards category; So if f(x) -> inf and g(x) -> 0, then f(x) * g(x) would represent inf * 0. So if ...

  1. #61
    and the Hat of Guessing tabstop's Avatar
    Join Date
    Nov 2007
    Posts
    14,185
    So if f(x) -> inf and g(x) -> 0, then f(x) * g(x) would represent inf * 0. So if f(x) = x, and g(x) = 1/x as x gets large, then f(x) is always 1. If f(x) = x^2 and g(x) = 1/x as x gets large, then f(x) is x, which -> inf. So we'll get different limits, depending on how f and g vary.

  2. #62
    & the hat of GPL slaying Thantos's Avatar
    Join Date
    Sep 2001
    Posts
    5,681
    Quote Originally Posted by tabstop View Post
    So if f(x) -> inf and g(x) -> 0, then f(x) * g(x) would represent inf * 0.
    That is one way you could arrange it (and the way that directly ties into the previous question)

    So if f(x) = x, and g(x) = 1/x as x gets large, then f(x) is always 1. If f(x) = x^2 and g(x) = 1/x as x gets large, then f(x) is x, which -> inf.
    I think you are using f(x) here to represent two different things. Might be better to say: h(x) = f(x) * g(x).
    When f(x) = x and g(x) = 1/x then h(x) = 1
    When f(x) = x^2 and g(x) = 1/x then h(x) = x and as gets becomes unbounded so does h(x)

    Another example would be f(x) = 2x^2 + x + 1 and g(x) = 1/(x^2 + 10x + 1). As x becomes unbounded then h(x) approaches 2. But if f(x) = x and g(x) = 1/(2x) then the limit would be 1/2.

    So as tabstop directly said, different functions will give different results but still have that inf * 0 form.

Page 5 of 5 FirstFirst 12345
Popular pages Recent additions subscribe to a feed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21